Superconducting Quantum Interference Device (SQUID)

30/11/18
Klash kick-off meeting LNF
1
Un amplificatore SQUID per il
segnale del rivelatore KLASH
Paolo Falferi FBK/TIFPA
The Superconducting Quantum Interference Device combines two phenomena
0
=h/2e ≈ 2
10
-15
 Wb
is the Flux Quantum
=n
0
 (n=0, ±1, ±2...)
I
Flux Quantization
Th: F. London (1950)
Exp: Deaver and Fairbank (1961)
Th: Josephson (1962)
Exp: Anderson and Rowell (1963)
Superconductor
I
0
 is the Critical Current (maximum supercurrent)
 is the phase of the macroscopic wave-function
that describes the Cooper pair condensate
The dc SQUID 
h ≈ 6.6x10
-34
 Js is the Planck constant
e ≈ 1.6x10
-19
 C is the electron charge
30/11/18
Klash kick-off meeting LNF
2
 
= (n+1/2)
 
0
 
= n
 
0
V
I
1
2
3
/
0
V
I
0
 ~ 10-20 µA
Two Josephson junctions connected in parallel on a
superconducting loop
Each junction has a self-capacitance C and an added
resistive shunt R
Provided that (I condition)
the 
I-V characteristic
 is nonhysteretic
II condition:
C
= 2
I
0
 R
2
C/
0
 ≤ 1 .
For 
c
<<1 V=R(I
2
-I
0
2
)
1/2 
≈ RI for I>>I
0
The dc SQUID 
2I
0
I
0
I-V Characteristic
V-
 Characteristic
2
k
B
T/I
0
0
<<1
I
b
Max response to a 

a
<<
0
at 
a
= (2n+1)
0
/4
V ~ 20-100 µV
30/11/18
Klash kick-off meeting LNF
3
The white noise of low-Tc SQUIDs is in general in good agreement
with these predictions.
From numerical simulation the SQUID response is optimized if
1)

C
= 2
I
0
 R
2
C/
0
 <≈ 1 .
2) 
L
= 2LI
0
/
0
 = 1  where L=SQUID loop inductance
For these conditions
Transfer Function = V
 
≈ R/L ≈ 1/√(
LC)
Flux Noise S
(
) = S
V
(
)/V
2
 ≈ 16k
B
TL
2
/R
Energy Resolution = 
 = S
(
)/2L ≈ 9k
B
TL/R ≈ 16k
B
T√LC 
Slope V

≈ R/L

≈ 10
-33
 J/Hz ≈ 10
h
    for T=0.3K  L=50pH  R=2
The dc SQUID 
the Noise scales with the Temperature
30/11/18
Klash kick-off meeting LNF
4
M
i
G
L
SQ
Flux-Locked Loop SQUID
For small signals (<0.1
0
) the SQUID can be
operated in a linear range around the optimum
working point W
The dc SQUID 
Electronics - Flux-Locked Loop
Flux of the Earth's magnetic field
(50 
T) through 10
m
10
m is 2.5
0
For larger signals a 
linearization
 of the
transfer function is realized with a flux-
locked loop (FLL)
The deviation of the SQUID voltage V from
that at the optimum working point is
amplified, integrated, and fed back via a
feedback resistor R
f
 and a feedback mutual
inductance M
f
FLL SQUID transfer function =  R
f
/M
f
M
f
R
f
V
out
Preamp +
Integrator
30/11/18
Klash kick-off meeting LNF
5
Two-stage SQUID amplifier
The dc SQUID 
Electronics - Methods to Suppress Preamplifier Noise
30/11/18
Klash kick-off meeting LNF
6
Minimum Energy Resolution 
 = 35 
h
Saturation due to the Hot Electron Effect
Two-stage SQUID amplifier
The dc SQUID 
Electronics - Methods to Suppress Preamplifier Noise
30/11/18
Klash kick-off meeting LNF
7
Fabrication Technology
M
i
L
i
V
I
To improve the magnetic field
resolution:
larger pickup loop
+
multi-turn spiral input coil
Tight coupling (M
i
2
L
i
L
s
) 
is obtained with
multi-turn input coil integrated on top of
the SQUID washer
L
s
Flux Transformer
Wire-wound or 
Thin-film
Pick-up
The dc SQUID 
50-150 
m
Practical realization
Typical dc SQUID layout
Square Washer - L
s
=80-300 pH
Uncoupled SQUID
Coupled SQUID
Input Coil
R. Cantor and D. Koelle
30/11/18
Klash kick-off meeting LNF
8
The conventional square-washer SQUID can be operated as a low-
noise amplifier up to about 100 MHz. At higher frequencies the
parasitic capacitance between the input coil and the square
washer lowers the gain to useless levels
Lo SQUID per KLASH @ 70-250 MHz
Il Problema
dell’alta frequenza
30/11/18
Klash kick-off meeting LNF
9
M. A. Tarasov et al., IEEE Trans. Appl. Supercond. 2, 79 (1992)
L. Spietz et al., Appl. Phys. Lett. 95, 092505 (2009)
Sono stati sviluppati diversi
metodi per estendere la freq
di operazione.
D. Drung et al., IEEE Trans. Appl. Supercond. 15, 777 (2005)
30/11/18
Klash kick-off meeting LNF
10
Lo SQUID per KLASH @ 70-250 MHz
Il Problema
dell’alta frequenza
I
n contrast to the conventional input scheme the signal is applied
between one end of the coil and the washer (the other end of the coil is
left open). The washer provides the groundplane for the resulting
microstrip
Compared to cold semiconductor amplifiers
, MSA offer 
lower noise
 (a
factor 50 for 
 < 1GHz) and 
much lower power
 
dissipation
.
Near-quantum-limited
 performance in the gigahertz range
The resonant frequency can be changed
by connecting a varactor diode
Microstrip SQUID Amplifier (MSA)
Only one manufacturer of
MSA: ez SQUID
A MSA has recently replaced the HEMT amplifier
of the 
Axion Dark Matter eXperiment
 that uses a
microwave cavity at 800 MHz operating at
ultracryogenic temperatures
M. Muck and R. McDermott
30/11/18
Klash kick-off meeting LNF
11
Lo SQUID per KLASH @ 70-250 MHz
Il Problema
dell’alta frequenza
Accoppiamento con cavità
Accoppiamento tipo ADMX cioè
“critically coupled antenna”
“MSA load-matched to 50 Ohm via a
terminated Circulator”
Non sente i disturbi a basse
frequenze
Su ADMX funziona
Funziona giù fino a 70 MHz?
MSA
SQUID
Accoppiamento magnetico “tradizionale”
Per non sentire rumore vibrazionale
 
 ci
deve essere un accoppiamento passa
alto o banda ad alto Q
Va simulato e ottimizzato l’intero sistema
cavità-pickup-squid
 
Δ
S = 1 
μ
m
2
 in 0.6 T => 300 
0
cavità
accoppiamento
risonante
SQUID
30/11/18
Klash kick-off meeting LNF
12
Lo SQUID per KLASH @ 70-250 MHz
Il Problema
dell’alta frequenza
Z
in
= i
L
i
 + 
Z(
, I
bias
, 
, ….)
The SQUID amplifier
Usually negligible.
Important with high Q input
load and at high frequency
signals 
(
~MHz)
its input impedance
Input Impedance of the dc SQUID Amplifier
V
out
I
in
Instabilità
Accoppiamento magnetico con cavità
Lo SQUID per KLASH @ 70-250 MHz
30/11/18
Klash kick-off meeting LNF
13
D(f) =D
0
/(1+if/f
D
)
Instabilità
Accoppiamento magnetico
con cavità
Lo SQUID per KLASH @ 70-250 MHz
Feedback
cooling
30/11/18
Klash kick-off meeting LNF
14
Power spectral density of the SQUID input current for four different values of
the feedback amplifier gain D
0
Resonance Frequency = 11.5 kHz
Operating Temperature = 135 mK
Minimum Effective Temperature = 14 
K
Instabilità
Accoppiamento magnetico
con cavità
Lo SQUID per KLASH @ 70-250 MHz
Feedback
cooling
30/11/18
Klash kick-off meeting LNF
15
Back-action Noise
Usually negligible.
Important with high Q input load
and at high frequency (~MHz)
Additive
Noise
Back-action noise
Accoppiamento magnetico
con cavità
Lo SQUID per KLASH @ 70-250 MHz
30/11/18
Klash kick-off meeting LNF
16
Things to do list
Verificare la possibilità di utilizzo di un Microstrip SQUID Amplifier fino a 70 MHz
e nel caso acquistarne uno (ezSQUID)
Costruzione di una test facility operante in LHe
Acquisire e testare sensori SQUID custom realizzati per alta frequenza (bassa
capacità parassita fra input coil e SQUID loop) da Supracon? PTB/Magnicon?
IBS/Corea?
Elettronica dedicata, veloce e a basso rumore, su modello di quella del PTB
Cavo criogenico speciale più corto possibile tra elettronica e sensore squid
Progettazione FEM del sistema cavità – pick-up – linea risonante – SQUID con
ottimizzazione del rumore
Costruzione di una linea risonante a basse perdite tra pick-up e induttanza di
ingresso dello SQUID
30/11/18
Klash kick-off meeting LNF
17
FINE
High spatial resolution
small pickup loop (
 ≈ 10 
m)
SQUID loop as pickup
(uncoupled SQUID)
High field resolution
large pickup loop
thin-film or wire-wound coil connected to a
coupled SQUID
Best performance
S
B
 
1/2
 = 0.9 fT/Hz
1/2
Magnetometers for High Spatial Resolution
(for scanning magnetic microscopes)
Magnetometers for High Field Resolution
Magnetometers and Gradiometers
Magnetometers and Gradiometers
(a) Magnetometer
(b) First-derivative axial gradiometer
(c) Second-derivative axial gradiometer
(d) Thin-film planar first-order gradiometer
(parallel and series pick-up loops)
When
the magnetic field source is "distant" or
the environment is magnetically noisy
Magnetometer      
GRADIOMETER
pick-up balance up to 0.001% (with high-precision
fabrication and post-assembly balancing)
A. Braginski and J. Clarke
Noise Temperature
“True” Energy Resolution
Energy Resolution from
additive noise is incomplete
Noise Impedance
Quantum Magnetics two-stage SQUID
8.9 kHz
Noise Sources of the dc SQUID Amplifier
Slide Note
Embed
Share

The Superconducting Quantum Interference Device (SQUID) is a crucial component for detecting signals in devices like the KLASH detector. By combining Flux Quantization and Josephson Tunneling, the SQUID operates based on key principles such as the Josephson Equations and the Flux Quantum. Through careful design considerations and operation within specific parameters, the SQUID can effectively amplify and process signals with high sensitivity and noise suppression.

  • SQUID
  • Superconductivity
  • Quantum Physics
  • Signal Amplification

Uploaded on Sep 30, 2024 | 0 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. Download presentation by click this link. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

E N D

Presentation Transcript


  1. Un amplificatore SQUID per il segnale del rivelatore KLASH Paolo Falferi FBK/TIFPA 30/11/18 Klash kick-off meeting LNF 1

  2. The dc SQUID The Superconducting Quantum Interference Device combines two phenomena Flux Quantization Josephson Tunneling =n 0(n=0, 1, 2...) I Superconductor Th: F. London (1950) Exp: Deaver and Fairbank (1961) Th: Josephson (1962) Exp: Anderson and Rowell (1963) Josephson Equations 0=h/2e 2 10-15Wb is the Flux Quantum I=I0sin = 1- 2 d /dt=2eV/ =2 V/ 0 I0is the Critical Current (maximum supercurrent) is the phase of the macroscopic wave-function that describes the Cooper pair condensate h 6.6x10-34Js is the Planck constant e 1.6x10-19C is the electron charge 30/11/18 Klash kick-off meeting LNF 2

  3. The dc SQUID I Two Josephson junctions connected in parallel on a superconducting loop Each junction has a self-capacitance C and an added resistive shunt R Provided that (I condition) the I-V characteristic is nonhysteretic II condition: 2 kBT/I0 0<<1 V R C C= 2 I0R2C/ 0 1 . V- Characteristic I-V Characteristic Max response to a a<< 0 at a= (2n+1) 0/4 I = n 0 V Ib 2I0 I0 V ~ 20-100 V = (n+1/2) 0 I0~ 10-20 A 1 2 3 V / 0 For c<<1 V=R(I2-I02)1/2 RI for I>>I0 30/11/18 Klash kick-off meeting LNF 3

  4. The dc SQUID From numerical simulation the SQUID response is optimized if 1) C= 2 I0R2C/ 0< 1 . 2) L= 2LI0/ 0= 1 where L=SQUID loop inductance For these conditions V Slope V R/L Transfer Function = V R/L 1/ ( LC) Flux Noise S ( ) = SV( )/V2 16kBTL2/R Energy Resolution = = S ( )/2L 9kBTL/R 16kBT LC the Noise scales with the Temperature 10-33J/Hz 10 for T=0.3K L=50pH R=2 The white noise of low-Tc SQUIDs is in general in good agreement with these predictions. 30/11/18 Klash kick-off meeting LNF 4

  5. The dc SQUID Electronics - Flux-Locked Loop For small signals (<0.1 0) the SQUID can be operated in a linear range around the optimum working point W Flux of the Earth's magnetic field (50 T) through 10 m 10 m is 2.5 0 Flux-Locked Loop SQUID For larger signals a linearization of the transfer function is realized with a flux- locked loop (FLL) The deviation of the SQUID voltage V from that at the optimum amplified, integrated, and fed back via a feedback resistor Rfand a feedback mutual inductance Mf FLL SQUID transfer function = Rf/Mf Mi Vout G Preamp + Integrator LSQ Li working point is Mf Rf 30/11/18 Klash kick-off meeting LNF 5

  6. The dc SQUID Electronics - Methods to Suppress Preamplifier Noise Two-stage SQUID amplifier Sensor SQUID Amplifier SQUID Matching Network Iin Vout Feedback Line In principle the noise is thermal it scales with temperature 30/11/18 Klash kick-off meeting LNF 6

  7. The dc SQUID Electronics - Methods to Suppress Preamplifier Noise Two-stage SQUID amplifier Minimum Energy Resolution = 35 Saturation due to the Hot Electron Effect 30/11/18 Klash kick-off meeting LNF 7

  8. The dc SQUID Practical realization Typical dc SQUID layout Square Washer - Ls=80-300 pH Fabrication Technology Uncoupled SQUID I To improve the magnetic field resolution: V larger pickup loop + multi-turn spiral input coil R. Cantor and D. Koelle Coupled SQUID I Mi Flux Transformer V Lp Li Ls Input Coil Wire-wound or Thin-film Pick-up Tight coupling (Mi2 LiLs) is obtained with multi-turn input coil integrated on top of the SQUID washer 30/11/18 Klash kick-off meeting LNF 8

  9. Il Problema dell alta frequenza Lo SQUID per KLASH @ 70-250 MHz The conventional square-washer SQUID can be operated as a low- noise amplifier up to about 100 MHz. At higher frequencies the parasitic capacitance between the input coil and the square washer lowers the gain to useless levels 30/11/18 Klash kick-off meeting LNF 9

  10. Il Problema dell alta frequenza Lo SQUID per KLASH @ 70-250 MHz Sono stati sviluppati diversi metodi per estendere la freq di operazione. M. A. Tarasov et al., IEEE Trans. Appl. Supercond. 2, 79 (1992) L. Spietz et al., Appl. Phys. Lett. 95, 092505 (2009) D. Drung et al., IEEE Trans. Appl. Supercond. 15, 777 (2005) 30/11/18 Klash kick-off meeting LNF 10

  11. Il Problema dell alta frequenza Lo SQUID per KLASH @ 70-250 MHz Microstrip SQUID Amplifier (MSA) In contrast to the conventional input scheme the signal is applied between one end of the coil and the washer (the other end of the coil is left open). The washer provides the groundplane for the resulting microstrip Compared to cold semiconductor amplifiers, MSA offer lower noise (a factor 50 for < 1GHz) and much lower power dissipation. Near-quantum-limited performance in the gigahertz range The resonant frequency can be changed by connecting a varactor diode M. Muck and R. McDermott A MSA has recently replaced the HEMT amplifier of the Axion Dark Matter eXperiment that uses a microwave cavity at 800 ultracryogenic temperatures MHz operating at Quantum Noise Temperature at 700 MHz: 33mK Only one manufacturer of MSA: ez SQUID 30/11/18 Klash kick-off meeting LNF 11

  12. Il Problema dell alta frequenza Lo SQUID per KLASH @ 70-250 MHz Accoppiamento con cavit Accoppiamento tipo ADMX cio critically coupled antenna MSA load-matched to 50 Ohm via a terminated Circulator Non sente i disturbi a basse frequenze Su ADMX funziona Funziona gi fino a 70 MHz? MSA Accoppiamento magnetico tradizionale Per non sentire rumore vibrazionale ci deve essere un accoppiamento passa alto o banda ad alto Q Va simulato e ottimizzato l intero sistema cavit -pickup-squid SQUID cavit accoppiamento risonante S = 1 m2 in 0.6 T => 300 0 SQUID 30/11/18 Klash kick-off meeting LNF 12

  13. Lo SQUID per KLASH @ 70-250 MHz Accoppiamento magnetico con cavit Instabilit Input Impedance of the dc SQUID Amplifier its input impedance The SQUID amplifier Mi Iin Vout G Li H Li Z Mf Mi-f Zin= i Li+ Z( , Ibias, , .) Usually negligible. Important with high Q input load and at high frequency signals (~MHz) ! 30/11/18 Klash kick-off meeting LNF 13

  14. Lo SQUID per KLASH @ 70-250 MHz Accoppiamento magnetico con cavit Instabilit Feedback cooling D(f) =D0/(1+if/fD) 30/11/18 Klash kick-off meeting LNF 14

  15. Lo SQUID per KLASH @ 70-250 MHz Accoppiamento magnetico con cavit Instabilit Feedback cooling D0=2 Resonance Frequency = 11.5 kHz Operating Temperature = 135 mK Minimum Effective Temperature = 14 K D0=10 D0=50 D0=100 Power spectral density of the SQUID input current for four different values of the feedback amplifier gain D0 30/11/18 Klash kick-off meeting LNF 15

  16. Lo SQUID per KLASH @ 70-250 MHz Accoppiamento magnetico con cavit Back-action noise FLL SQUID Noise Model Vn Li Mi G LSQ Li In Back-action Noise Usually negligible. Important with high Q input load and at high frequency (~MHz) 2 SQ k TL Additive Noise B RM S 16 ! i 2 i k T 11 2 2 B S M v i R 30/11/18 Klash kick-off meeting LNF 16

  17. Things to do list Verificare la possibilit di utilizzo di un Microstrip SQUID Amplifier fino a 70 MHz e nel caso acquistarne uno (ezSQUID) Costruzione di una test facility operante in LHe Acquisire e testare sensori SQUID custom realizzati per alta frequenza (bassa capacit parassita fra input coil e SQUID loop) da Supracon? PTB/Magnicon? IBS/Corea? Elettronica dedicata, veloce e a basso rumore, su modello di quella del PTB Cavo criogenico speciale pi corto possibile tra elettronica e sensore squid Progettazione FEM del sistema cavit pick-up linea risonante SQUID con ottimizzazione del rumore Costruzione di una linea risonante a basse perdite tra pick-up e induttanza di ingresso dello SQUID 30/11/18 Klash kick-off meeting LNF 17

  18. FINE

  19. Magnetometers and Gradiometers Magnetometers for High Field Resolution Magnetometers for High Spatial Resolution (for scanning magnetic microscopes) High field resolution High spatial resolution large pickup loop small pickup loop ( 10 m) thin-film or wire-wound coil connected to a coupled SQUID SQUID loop as pickup (uncoupled SQUID) Best performance SB 1/2= 0.9 fT/Hz1/2 Mi Ls Lp Li Flux Transformer Wire-wound or Thin-film Pickup

  20. Magnetometers and Gradiometers When the magnetic field source is "distant" or the environment is magnetically noisy (a) Magnetometer (b) First-derivative axial gradiometer (c) Second-derivative axial gradiometer (d) Thin-film planar first-order gradiometer (parallel and series pick-up loops) Magnetometer GRADIOMETER Thin-Film Planar Gradiometers Two-dimensional film Planar Gradiometers (activity in brain or heart) and Miniature Susceptometers (magnetic properties of particles down to 10 m diam and magnetic calorimeter x-ray detectors ) Wire-Wound Axial Gradiometers deep-lying sources Long baseline axial gradiometers A. Braginski and J. Clarke wire-wound pickup coils transformer-coupled to the SQUID pick-up balance up to 0.001% (with high-precision fabrication and post-assembly balancing)

  21. Noise Sources of the dc SQUID Amplifier Noise Temperature Quantum Magnetics two-stage SQUID iv S = Im2 2 2 T S S k S S k n i v B i v B 8.9 kHz True Energy Resolution = k BT 0 n Noise Impedance Energy Resolution from additive noise is incomplete 1 ' i S L = iv S iv S + 2 Im Im S S S i = v i Z n i L S ( ) i = = 2 SQ Z S S L k i n v i i 2 i 2 2 M

  22. C Ci Vout A Lp Li L R Ci

Related


More Related Content

giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#