Status of Birkhoff's Theorem in Polymerized Semiclassical Regime of Loop Quantum Gravity
The study discusses the status of Birkhoff's theorem in the polymerized semiclassical regime of Loop Quantum Gravity. Topics covered include the collapse of a spherically symmetric cloud of dust, modified Einstein's equations, classical theory elements, polymerization concepts, semiclassical theory formulations, and the Polymerized Einstein Field Equations. The interior solutions and proposals regarding the field equations are also explored at the Seventeenth Marcel Grossmann Meeting in Pescara.
Download Presentation
Please find below an Image/Link to download the presentation.
The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. Download presentation by click this link. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.
E N D
Presentation Transcript
Status of Birkhoff s theorem in polymerized semiclassical regime of Loop Quantum Gravity Luca Cafaro LC, Jerzy Lewandowski (2024) arXiv:2403.01910 Seventeenth Marcel Grossmann Meeting Pescara, 7-12 July 2024
Introduction Collapse of a spherically symmetric cloud of homogeneous pressureless dust Modified Einstein s equations Oppenheimer-Snyder model (by matching) Seventeenth Marcel Grossmann Meeting Pescara, 7-12 July 2024
Classical theory General spherically symmetric line element: ??2= ???2+(??)2 (?? + ????)2+ ??? 2 (PG coordinates) ?? ???1,???2 ???1,???2 = 2??(?1 ?2) ? = ? = 1 = ??(?1 ?2) Dust Gauge (???? ????? = ?) ? = 1 ??= ?2 Areal Gauge ? ??= 1 + ?(?,?) Seventeenth Marcel Grossmann Meeting Pescara, 7-12 July 2024
Polymerization J. G. Kelly, R. Santacruz, E. Wilson-Ewing. (2020) V. Husain, J. G. Kelly, R. Santacruz, E. Wilson-Ewing. (2022) ? ? ? |??+1 |?? 1 |?? 1-dimensional graph: ? ??+1 ?? 1 ?? Discretization: ? ?? ? Operators: ?? ?? ?? ??= ?? ????(??) ??= ?? 2 ? ??=sin( ????(??)) ?? ?? ??= ?? ????(??) Polymerization: ?? Seventeenth Marcel Grossmann Meeting Pescara, 7-12 July 2024
Semiclassical theory J. G. Kelly, R. Santacruz, E. Wilson-Ewing. (2020) V. Husain, J. G. Kelly, R. Santacruz, E. Wilson-Ewing. (2022) ??2= ??2+(??)2 (?? + ????)2+ ?2? 2 ?2 ? ??? ?2 ? ?? ?? 2 ?? 2 ?? ? ? 2? ???3???2? ??= sin?cos? 2? ? } Polymerized Einstein Field Equations (PEFE) ? = {?,?} ??= ?? ?2 ????3???2? + ??+?? ?2 ?? 1 ? ? = 2?? ? = 8???? ? 4???? ??= ?? ? ??= ? sin?cos? ? Seventeenth Marcel Grossmann Meeting Pescara, 7-12 July 2024
Interior ? 0, ??? = 0 M. Bojowald, J. D. Reyes, R. Tibrewala (2009) K. Giesel, H. Liu, E. Rullit, P. Singh, S. A. Weigl (2023) ? ??= 1 + ?(?,?) ? = ? 8? 3??2+ ? 1 ? 8? 3? + 3 ? 3 { ?? 8??2 ?2 ?? 8??? PEFE ? ???2? = ?2 ?2 ? = ? ?,? ? = ? ??= ??? ? = ?(?) ???2 1 + ?(?)??2+ ?2? 2 ??2= ??2+ (LTB coordinates) 2 ??? ? 8? 3? ? 1 ? 3 ? ?2 = + ?2 ?? 8??? Seventeenth Marcel Grossmann Meeting Pescara, 7-12 July 2024
Interior ? 0, ??? = 0 ???2 1+?(?)??2+ ?2? 2 From ??2= ??2+ ? = ?(?)??? ?(?) = ??? 2 1 2? 2 The Friedmann dust ball: ??2= ??2+ ?2??2+ ?2?? with ??? = ?sin ?? 2 ? ? 8? 3? ? 1 ? 3 ? ?2 = + ?2 ?? 8??? ?3 (pressureless dust) 1 ? Classical Friedmann equation for ?? ( 0) Seventeenth Marcel Grossmann Meeting Pescara, 7-12 July 2024
Static Exterior ? = 0 ?2 ? ?? ?? ? ??= sin?cos? = 0 ? } ??= ?? = ??= 0 1 + ? The metric is fully determined by these 2 expressions 2 ?? 2=2? ? ? ?+? + ? ? 4?2 ?2 ? 2 ??2= ??2+ ?2(?? + ????)2+ ?2? 2 ??2 ?(?)+ ?2? 2 In Schwarzschild coordinates: ??2= ?(?)??2+ 2 ? ? = 1 2? +? ? ?+? ?2 ? 2 Seventeenth Marcel Grossmann Meeting Pescara, 7-12 July 2024
Time dependent Exterior ? = 0 ?2 ? ?? ?? ? ? ??= ??= sin?cos? 0 1 + ?(?,?) ? = ? ? +2? ?2+2? ? { 1 ?2 ?3 ? PEFE ?2+2? ? ???2? = ?2 ?3 ? = ????? or ? = ?(?,?) 2 If ? ?(?,?) then the only line element is given by ? ? = 1 2? ? ?2 ? ?+? ?+ 2 Seventeenth Marcel Grossmann Meeting Pescara, 7-12 July 2024
Oppenheimer-Snyder model (by matching)
Oppenheimer-Snyder model H. Ziaie, Y. Tavakoli (2020) A. Parvizi, T. Pawlowski, Y. Tavakoli, J. Lewandowski (2022) J. Lewandowski, Y. Ma, J. Yang, C. Zhang (2023) ??2= ?(?)??2+??2 VACUUM ?,?,?,? ?(?)+ ?2? 2 2 2 ? ? ???,0 ? ? = 1 2? +? DUST ?,?,?,? ?2 ? 2 ? =? 1 2? 2 ??2= ??2+ ?2??2+ ?2?? with ??? = ?sin ?? ?3 2 ? ? 8? 3? ? 1 ? 3 ? ?2 = + ?2 ?? 8??? ? ? = 4? 3? 1 ? 3 ? ?2 8? 3? ? 3 2 ? ?? 3 ? ?2 + + ?2 ?? 8??? 8??? Seventeenth Marcel Grossmann Meeting Pescara, 7-12 July 2024
Critical mass and horizons 2 2 ? ? ???,0 ? ? = 1 2? +? ?2 ? 2 real solutions of ? ? = 0 (no horizons) If ? ? ?+ ? 32 6 2= 2 4 2 4 + 30 ?2??,0 + ?3??,0 + ?2??,0 ? 21664 96 ???,0 16 16 ???,0 2 real solutions to ? ? = 0 If ? ?+ ? ? 2 13 23 2 2 +1 2 ???,0 6? 1 ???,0 24 ? ?? 2 ?? 2 43 ? + ? ? ? = + 2 2 1 ???,0 8 ? 43 ? + ? ? ?+= 2? Seventeenth Marcel Grossmann Meeting Pescara, 7-12 July 2024
k=0 H. Ziaie, Y. Tavakoli (2020) A. Parvizi, T. Pawlowski, Y. Tavakoli, J. Lewandowski (2022) J. Lewandowski, Y. Ma, J. Yang, C. Zhang (2023) ?2 ?4 ? ? = 1 2? Exact solution to the PEFE with ? = 0 ?+ ? 4 ? = 0, ?+= ? 3 3 2 ? ? 8? 3? 1 ? = ?? + 4??2 ? ? = 4? 3? 1 ? ?? ?? Credits: J. Lewandowski, Y. Ma, J. Yang, C. Zhang Seventeenth Marcel Grossmann Meeting Pescara, 7-12 July 2024
k= -1 2 2 ? 1,0 2 ? ? = 1 2? ? ?2 ? ?+ Exact solution to the PEFE with ? = ? 1,0 2 ?+ 2 ? ? 8? 3? +1 1 ? 3 1 ?2 = ?2 ?? 8??? ? ? = 4? 3? 1 ? 3 1 ?2 8? 3? +1 3 2 ? ?? 3 1 ?2 + + Credits: ?2 ?? 8??? 8??? J. Lewandowski, Y. Ma, J. Yang, C. Zhang Seventeenth Marcel Grossmann Meeting Pescara, 7-12 July 2024
k=1 2 2 ?1,0 2 ? ? = 1 2? ? ?2 ? ? Exact solution to the PEFE with ? = ?1,0 2< 0 ?+ 2 ? ? 8? 3? 1 1 ? 3 1 ?2 = + ?2 ?? 8??? ? ? = 4? 3? 1 ? 3 1 ?2 8? 3? 1 3 2 ? ?? 3 1 ?2 + + Credits: ?2 ?? 8??? 8??? J. Lewandowski, Y. Ma, J. Yang, C. Zhang Seventeenth Marcel Grossmann Meeting Pescara, 7-12 July 2024
Conclusion Two independent methods lead to the very same metric. Static exterior solutions to the Einsten s equation are Schwarzschild-like but depend on two parameters (M and B). There may exist other non-static solutions. If this possibility is ruled out Birkhoff s theorem. Seventeenth Marcel Grossmann Meeting Pescara, 7-12 July 2024
Seventeenth Marcel Grossmann Meeting Pescara, 7-12 July 2024
Classical theory Gravity + Dust: ????+2 ???? 2? ?+ ??) + 4? ??? ?( ?+ ?) ??( ? ? = ?? ?? ?? ???? 2+ ?2 ?2 ???? 2 ???? ?2???? ???? ?? 1 ?= 2?22???? ??+ 4 ?? ?? 2?? 2+ 2???2 ?= 4? ?? 1 ?= 2?????? ?????? ? ??= 4?????? 2? Seventeenth Marcel Grossmann Meeting Pescara, 7-12 July 2024
Classical theory ????+2 ???? 2? ?+ ??) + 4? ??? ?( ?+ ?) ??( ? Gravity + Dust: ? = ?? ?? Dust Gauge (? = ?) ? = 1 ??= ?? Areal Gauge (??= ?2) ? ???? ? ???1,???2 = ??(?1 ?2) ? = ?? ?? ?? ??????? 2+??? ?2 ?? = 4???= 1 +?? ?? 2??? 2? ? Seventeenth Marcel Grossmann Meeting Pescara, 7-12 July 2024
Dust density ? From the Dust Gauge: ?= 4??? By solving the Scalar Constraint: ?= 4???= The density ? is defined by ?= ? ?? ?? ???= ? = 4???? Seventeenth Marcel Grossmann Meeting Pescara, 7-12 July 2024
Quantum theory 1 1 Quantization: ?, ??, ?? ??,??, ? ?? ?? ? ? ? |?? 1 |??+1 |?? 1-dimensional graph: ? ??+1 ?? 1 ?? ?|?? ? =?? ?|?? ? ?? Triad operator: 2 ? ??=sin( ????(??)) Polymerization ?? ?? ??= ?? ????(??) Holonomy: ?? ? = |?? ?+ ?? ??|?? ??= ?? ?|?? ? = 0 If ?? 0 1 Inverse triad: ? = ?|?? ?|?? ? =?? ?|?? ? If ?? 1 ? ?|?? ?? ?? Seventeenth Marcel Grossmann Meeting Pescara, 7-12 July 2024