Exploring Kondo Physics through Quantum Information

kondo physics from a quantum information n.w
1 / 48
Embed
Share

Delve into the realm of Kondo physics from a quantum information perspective, featuring insights from leading physicists such as Pasquale Sodano, Sougato Bose, and more. Discover the applications of entanglement measures, the dynamics of mixed states, and the unique characteristics of gapped and gapless systems within the Kondo model.

  • Kondo Physics
  • Quantum Information
  • Entanglement Measures
  • Gapped Systems
  • Quantum Criticality

Uploaded on | 0 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

You are allowed to download the files provided on this website for personal or commercial use, subject to the condition that they are used lawfully. All files are the property of their respective owners.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.

E N D

Presentation Transcript


  1. Kondo Physics from a Quantum Information Perspective Pasquale Sodano International Institute of Physics, Natal, Brazil 1

  2. Sougato Bose UCL (UK) Henrik Johannesson Gothenburg (Sweden) Abolfazl Bayat UCL (UK) 2

  3. References A. Bayat, H. Johannesson, S. Bose, P. Sodano To appear in Nature Communication. An order parameter for impurity systems at quantum criticality A. Bayat, S. Bose, P. Sodano, H. Johannesson, Phys. Rev. Lett. 109, 066403 (2012) Entanglement probe of two-impurity Kondo physics in a spin chain A. Bayat, S. Bose, P. Sodano, Phys. Rev. Lett. 105, 187204 (2010) Entanglement Routers Using Macroscopic Singlets Spin-Chain Kondo Model A. Bayat, P. Sodano, S. Bose, Phys. Rev. B 81, 064429 (2010) Negativity as the Entanglement Measure to Probe the Kondo Regime in the P. Sodano, A. Bayat, S. Bose Phys. Rev. B 81, 100412(R) (2010) Kondo Cloud Mediated Long Range Entanglement After Local Quench in a Spin Chain 3

  4. Contents of the Talk Negativity as an Entanglement Measure Single Kondo Impurity Model Application: Quantum Router Two Impurity Kondo model: Entanglement Two Impurity Kondo model: Entanglement Spectrum 4

  5. Entanglement of Mixed States Separable states: i i = = A i B i , 0 1 p p p AB i i i i A i B i p Entangled states: AB i How to quantify entanglement for a general mixed state? There is not a unique entanglement measure 5

  6. Negativity Separable: i i = A i B i = T T A i t B i ip 0 i ( ) p A A Valid density matrix = T ( 0) A Entangled: = 2 ( = T ) , N Negativity: A 0 6

  7. Gapped Systems Excited states Ground state | | i j x i x j : e The intrinsic length scale of the system impose an exponential decay 7

  8. Gapless Systems Continuum of excited states : 0 N Ground state x i x j | | i j There is no length scale in the system so correlations decay algebraically 8

  9. Kondo Physics K T K K Despite the gapless nature of the Kondo system, we have a length scale in the model 9

  10. Realization of Kondo Effect Semiconductor quantum dots D. G. Gordon et al. Nature 391, 156 (1998). S.M. Cronenwett, Science 281, 540 (1998). Carbon nanotubes J. Nygard, et al. Nature 408, 342 (2000). M. Buitelaar, Phys. Rev. Lett. 88, 156801 (2002). Individual molecules J. Park, et al. Nature 417, 722 (2002). W. Liang, et al, Nature 417, 725 729 (2002). 10

  11. Kondo Spin Chain = i = 1 . + . + 1 . ++ 1 . ( ' J ) H J J J J + 1 2 2 1 3 2 2 i i i i 2 J = c . 0 2412 Kondo : (gapless) 2 J 2 J 1 J c : Dimer (gapfull) 2 J 2 J 1 E. S. Sorensen et al., J. Stat. Mech., P08003 (2007) 11

  12. Entanglement as a Witness of the Cloud A B Impurity L / ' J ( ) ' J e K : 1 0 L E E K SA SB = = = : 1 0 L E E K SA SB = = : 1 0 L E E K SA SB 12

  13. Entanglement versus Length Entanglement decays exponentially with length 13

  14. Scaling B A Impurity L N-L-1 N L = ( , , ) ( , ) E L N E Kondo Regime: K N K L N ( , , ) ( , ) E L N E Dimer Regime: L K 14

  15. Scaling of the Kondo Cloud e = / J ' K K N L = ( , , ) ( , ) E L N E Kondo Phase: N K N = 4 K K ( , , ) E L N Dimer Phase: 15

  16. Application: Quantum Router Converting useless entanglement into useful one through quantum quench 16

  17. Simple Example ' 1. J ' 3. J 2 L 4 R m 2. J 3 = ) 0 ( = iHt ( ) ) 0 ( t e 1 3 cos( 4 ) J t = ' + ' J J J = ( ) max{ , 0 } m E t 14 m L R 4 17

  18. Extended Singlet J' opt = N ( ' ) 1 Jopt K With tuning J we can generate a proper cloud which extends till the end of the chain 18

  19. Quench Dynamics J J' J' m L R = ( ' ) 1 J N = ( ' ) 1 J N R R R L L L = ) 0 ( GS GS L R ( ) t ( ) EN t = iHLR t ( ) ) 0 ( t e 1 N 1 19

  20. Attainable Entanglement 1- Entanglement dynamics is very long lived and oscillatory 2- maximal entanglement attains a constant values for large chains 3- The optimal time which entanglement peaks is linear 20

  21. Distance Independence For simplicity take a symmetric composite: J ' J ' J m = N / ) 2 ( ) ' J ( 2 = N / ) 2 ( ) ' J ( 2 R L 2 t N t N = = = ( , , ) ' J ( , , ) ( , ) ( , ) E t N E t N E E 2 N N N 21

  22. Optimal Quench J' J' J L R m = ' + ' J J J m L R J J' J' m L R = + 1 ( )( ' ' ) J N J J m L R 2 N N ( ) ( ) Log = ' / ' J e J 2 K 2 log 22

  23. Optimal Parameter 23

  24. Non-Kondo Singlets (Dimer Regime) J J' J' m L R Clouds are absent K: Kondo (J2=0) D: Dimer (J2=0.42) 24

  25. Asymmetric Chains J J' J' m L R = ( ' ) 1 J N = ( ' ) 1 J N R R R L L L 25

  26. Entanglement in Asymmetric Chains Symmetric geometry gives the best output 26

  27. Entanglement Router 27

  28. Two Impurity Kondo Model 28

  29. Two Impurity Kondo Model 2 N L = N = . + . + 1 . + . L L L L L i L i L i L i ( ' J ' ) H J J J J + + 1 2 2 1 3 1 2 2 L L 2 i 2 R = i = . + . + 1 . + . R R R R R i R i R i R i ( ' J ' ) H J J J J + + 1 2 2 1 3 1 2 2 R R 2 = L 1. R 1 H J I I RKKY interaction 29

  30. Impurities 3 1 p = , 0 k = + k k p T T GS 1 1 L R 1 = ( ) 0 p N 1 1 2 L R Entanglement 1 ( ) 0 p N 1 1 2 L R 30

  31. Entanglement of Impurities ' J J ' J I c IJ Entanglement can be used as the order parameter for differentiating phases 31

  32. Scaling at the Phase Transition 1 / ' c I J J T e K K The critical RKKY coupling scales just as Kondo temperature does 32

  33. Entropy of Impurities = , 0 3 k 1 p = + k k p T T 1 1 L R = ( ) log( ) 1 ( ) log( 1 ) S p p p p 1 1 , L R = = 0 : ( ) log( ) 3 J S 0 : 0 J p Triplet 1 1 , L I I R = = = = 0 : 1/4 J p 0 : ( ) 2 J S Identity I 1 1 , L I R = 0 : 1 J p = 0 : ( ) 0 J S Singlet I 1 1 , L I R 33

  34. Impurity-Block Entanglement 34

  35. Block-Block Entanglement 35

  36. 2nd Order Phase Transition 36

  37. Order Parameter for Two Impurity Kondo Model 37

  38. Order Parameter Order parameter is: 1- Observable 2- Is zero in one phase and non-zero in the other 3- Scales at criticality Landau-Ginzburg paradigm: 4- Order parameter is local 5- Order parameter is associated with a symmetry breaking 38

  39. Entanglement Spectrum Entanglement spectrum: 39

  40. Entanglement Spectrum I J I J NA=NB=400 J =0.4 NA=600, NB=200 J =0.4 40

  41. Schmidt Gap Schmidt gap: I J 41

  42. Thermodynamic Behaviour J =0.4 J =0.5 I J I J In the thermodynamic limit Schmidt gap takes zero in the RKKY regime 42

  43. Diverging Derivative I J I J In the thermodynamic limit the first derivative of Schmidt gap diverges 43

  44. Diverging Kondo Length I J 44

  45. Finite Size Scaling = / / 1 c I (| | ) N f J J N S I = / / 1 c I (| | ) N f J J N S I | = | c I | J J S I = c I | J J I = 2 . 0 = 2 I 5 . 0 c I ( ) J J N 45

  46. Schmidt Gap as an Observable 46

  47. Summary Negativity is enough to determine the Kondo length and the scaling of the Kondo impurity problems. By tuning the Kondo cloud one can route distance independent entanglement between multiple users via a single bond quench. Negativity also captures the quantum phase transition in two impurity Kondo model. Schmidt gap, as an observable, shows scaling with the right exponents at the critical point of the two Impurity Kondo model. 47

  48. References A. Bayat, H. Johannesson, S. Bose, P. Sodano To appear in Nature Communication. An order parameter for impurity systems at quantum criticality A. Bayat, S. Bose, P. Sodano, H. Johannesson, Phys. Rev. Lett. 109, 066403 (2012) Entanglement probe of two-impurity Kondo physics in a spin chain A. Bayat, S. Bose, P. Sodano, Phys. Rev. Lett. 105, 187204 (2010) Entanglement Routers Using Macroscopic Singlets Spin-Chain Kondo Model A. Bayat, P. Sodano, S. Bose, Phys. Rev. B 81, 064429 (2010) Negativity as the Entanglement Measure to Probe the Kondo Regime in the P. Sodano, A. Bayat, S. Bose Phys. Rev. B 81, 100412(R) (2010) Kondo Cloud Mediated Long Range Entanglement After Local Quench in a Spin Chain 48

Related


More Related Content