Advanced Topics in Quantum Physics

 
Week 11,
Magnetic field, Haldane
Model, Chern number
 
Gauge invariance, Peierls substitution, linear
response, Kubo formula, integer quantum Hall effect,
Berry curvature, Chern number, TKNN formula
 
Electron Hamiltonian in
electromagnetic field
 
Haldane model (1988)
 
A
 
B
 
T
h
e
 
H
a
l
d
a
n
e
 
m
o
d
e
l
 
i
n
 
k
 
s
p
a
c
e
 
Linear response theory for
conductivity
 
0
 
Apply Wick’s theorem to
compute G
JJ
 
Back to real time 
t 
and then 
 
From contour 
 to retarded 
 
DC conductivity, 
 
 0
 
Berry phase/Berry curvature
 
3
      2
 
0          1
 
Computing Berry curvature
from eigenstates
 
Chern number, TKNN formula
(1982)
 
Haldane model
 
DC conductivity, taking the

0 limit differently
 
Other aspects of Berry phase
physics
 
Interpretation/calculation of electro-polarization of
ferroelectric materials
Electron-phonon interaction in Born-Oppenheimer
approximation
Electron transport in adiabatic driven systems
Berry phases in periodic driven systems, Floquet
theory, etc
Slide Note

See also this online notes: https://phyx.readthedocs.io/en/latest/index.html

Embed
Share

Dive deep into concepts like the Haldane Model, Chern Numbers, and Linear Response Theory in Quantum Physics. Understand the intricate relationships between magnetic fields, electron Hamiltonians, and conductivity theories. Explore the fascinating world of quantum Hall effects and gauge invariance in condensed matter physics.

  • Quantum Physics
  • Haldane Model
  • Chern Numbers
  • Linear Response Theory
  • Condensed Matter

Uploaded on Sep 28, 2024 | 0 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. Download presentation by click this link. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

E N D

Presentation Transcript


  1. Week 11, Magnetic field, Haldane Model, Chern number Gauge invariance, Peierls substitution, linear response, Kubo formula, integer quantum Hall effect, Berry curvature, Chern number, TKNN formula

  2. Electron Hamiltonian in electromagnetic field 2 p A 1 m ( ) 2 + + ) , = = p A B A E ( , e e 2 2 m t Gauge invariance: f t + / ie f A A , , f e e r ( ) i f j electron carries charge ( ) c e c e j j second quantization many-bod y Hamiltonian e j A r i d + e c c j j ( ) r ( ) c Hc c H c e k jk k j j jk j

  3. Haldane model (1988) A ?1 ?? 2 ??2= ?2? B ( ) ( ) js = ( 1) + + + + j j k c c j k h.c. h.c. H c c t t ic c 1 2 j j jk jk : nearest neighbor (sublattice A : next nearest neighbor (on same sublattice, A 1 on sublattice A, 2 on sub B) jk A, or B B) jk = lattice B s j

  4. The Haldane model in k space k ( ) ( ) k c c ( ) k A = A B ( ), k ( ) k ( ) k H c c H B 3 6 ( ) = + + ( ) k k cos( ) sin( ) 2 sin( ) H t t t k k 1 1 2 j x j y j z = = 1 4 j j 0 1 1 0 0 i 1 0 0 i = = = , , ?1 x y z 0 1 ?4 ?1 ??2 ?1,2,3 nearest neighbor vectors denoted by red arrows, ?4,5,6 next nearest neighbor vectors denoted by grey dotted arrows. ?1

  5. Linear response theory for conductivity k ( ) ( ) k c c ( ) k k dH d k A = = = = 3 J r j ( ) ( ) ( ), k V k k V k ( ) k ( ) ( ) , d e c c c ( ) B = = + = = 3 rj A J A ', ' H c Hc d H H H J A tot 0 = , , x y z iH t iH t ( ) ( ) = = = 0 0 H S I I ( ) t Tr ( ) t J Tr ( ) t J t ( ) 0 ( ) J J t e J e S I Generalize to contour time: i i '( ') ' H d ( ) ( ) = ( ) + ( ) '( ') + I 2 I I I ' ( ' ) J T J e T J T J H d O H I H 0 H H 0 0 = ( , ') ( ') ' G A d J J ( ) ( ) H N Tr e 0 = ( ) H ( ) H N Tr e 0 0 1 i ( , ') = ( ) ( ') = I I G T J J J J k T H 0 B

  6. Apply Wicks theorem to compute GJJ ? ,? ?,? k ( ) ( ) k c c ( ) k k dH d k A = = = = 3 J r j ( ) ( ) ( ), k V k k V k ( ) k ( ) ( ) , d e c c c ( ) B i ( , ') = ( ) ( ') = I I , ', , ' or G T J J j j l l A B J J H 0 2 e i ( ) = ( , ) ( ', ') ( ', ') c k k j l ( ) k ( ') k ( , ) k k V V T c c c ' ' ' ' jj ll j l k k , ', , ', , ' j j l l k k k 2 e i = ( , ) ( ', ') c k ( ', ') ( , ) ( 1) c k k l j ( ) k ( ') k k V V T c T c ' ' ' ' jj ll j l , ', , ', , ' j j l l ( ) k = , ') ( ', ) ( , , ') k 2 ( ) k ( ) k Tr ( i e V G V G k k

  7. Back to real time t and then ( ) = ( , ') ( ') ( , ) t ' J d G A J J + ' ' ' d dt ' + + ( ) + = = ' ' ( ) t ' ' ( ') ( ') t ' ( ') ( ') ( ') J dt G t t A dt G t t G t t A t J J J J J J , ' + = = = r J J r t t ( ') ( ') ' use G t t A t dt G G G G G Fourier transform ( ) E = ( ) ( ) = ( ) = ( ) ( ) r J J r J J ( ) J G A G V E i Kubo formula: ( ) r J J iG A i V k ( ) = = ( , ) k = r E V t

  8. From contour to retarded ( ) ( , , ') k = ( , ') ( ', ) + 2 ( ) k ( ) k Tr i e V G V G k k + t G G G G ( , ') G t ( ) k k = ' 2 ' ' ( , ) k ( ) k ( ) k Tr ( ) t V ( ) t i e V G G t + iEt dE ( ( ( ) ) = = 2 ( ) t Tr ( ) ( ) ( ) ( ) i e V G t V G t G t G E e 2 ( ) t ) = = 2 r ( ) t Tr ( ) ( ) i e V G t V G t use fluctuation-dissipation theorem: = = = = r a r a ( ) , (1 )( ) (1 ) G f G G ifA G f G G i f A + + ' 1 dE dE 2 ( ) ( , ) k = 2 r Tr ( ) ( ') ( ) ( ') e V G E V G E V G E V G E + i 2 ( ' ) E E + + ' ( ) f E E ( ') f E + dE dE ( ) = 2 Tr ( ) ( ') e V A E V A E i 2 2 ' E

  9. DC conductivity, 0 ( ) r J J iG i V k lim = = ( , ) r k Re Re V 0 + + 2 ' ( ) f E E ( ') f E e dE dE ( ) k = ( ) k ( ) k Im Tr ( ) ( ') V A E V k A E k i 2 2 ' V E + 2 ( ) f E E e dE ( ) k = ( ) k ( ) k Re Tr ( ) ( ) V A E V k A E k 2 2 V 1 + 1 x = used Plemelj formul a lim P ( ) x i x i 0

  10. Berry phase/Berry curvature 3 2 = k ( ) k H k k 0 1 = i | | e k + + k k k k k k | | ( ) + k k k k k = + + k + = k + 2 2 ( ), 1 1 ( ) O k i O + k k k k k k k k + k k k 1-form: k = = k A k k ( ) d i d d k k ( ) = A k A Stokes' theorem: d dk dk x y z Berry curvature: = k ( ) A k ( ) Imln | | | | 0 1 1 2 2 3 3 0 k k k k = = = lim A A i z x y y x 2 k k k k 0 x y y x

  11. Computing Berry curvature from eigenstates = + = + H H H n n n n n n n n n left multiply by , , we get n m m + = H m n m m n n m n H = = m n , , 0 n m m n n n n m = = k insert completeness: 1 ( , ) k k m m x y m k k k k = z n ( ) k i k k k k x y y x H H ( ) n x m m y n = Im x y 2 ( ) m n n m

  12. Chern number, TKNN formula (1982) 1 = = z ( ) k integer C dk dk x y 2 1BZ 2 e h = ( 0) C T yx n occupied n

  13. Haldane model ? = 0 ? = 0 ? = 1 Top left: real space and reciprocal space geometry. Left: band structure at fixed and ?1, as ?2 decreases from 0 passing the critical point, when ?2= /(3 3), in (c). Top: Berry curvature for different ?2 (as in left figure (a), (b) and (d)).

  14. DC conductivity, taking the 0 limit differently ( ) L' H pital's rule: lim '(0) f f 1 = = = + i r k ( ) k ( ) G E E H 0 E ( ) k i + k ( ) ( k = n n ) n n + + 2 ' ( ) f E E ( ') f E e dE dE ( ) k lim = ( ) k ( ) k Im Tr ( ) ( ') V A E V k A E k i 2 2 ' V E 0 + + 2 ' ( ) E ( ') f E i e dE dE f E ( ) k = ( ) k ( ) k Im Tr ( ) ( ') V A E V k A E k ( f ( ) k ) 2 2 2 V ' E 2 ( )) k ( ) k ( ) k i ( ( )Tr f e ( ) k = ( ) k ( ) k ( ) k ( ) k ( ) k ( ) k Im n m V V ( ) n n m m 2 V , , n m n m k ( ) k H = = = , , V H x y 2 e k = = z n ( )) k ( ) k ( V f Sd yx n V , n

  15. Other aspects of Berry phase physics Interpretation/calculation of electro-polarization of ferroelectric materials Electron-phonon interaction in Born-Oppenheimer approximation Electron transport in adiabatic driven systems Berry phases in periodic driven systems, Floquet theory, etc

Related


More Related Content

giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#