Secure multiparty computation - PowerPoint PPT Presentation


Revisiting the Spymasters: The Double Agent Problem

Delve into the intriguing world of spymaster tactics with a focus on the double agent problem and the feasibility of secure multiparty computation protocols. Explore motivations, related works, and groundbreaking results in this complex domain.

3 views • 20 slides


Computability: Exploring Theoretical Limits of Computation

Delve into computability theory, focusing on what is computable and the limits of computation. Explore concepts like Rice's Theorem, the Halting Problem, and classes of expressiveness in computability theory, such as combinational logic, finite-state machines, pushdown automata, and Turing machines.

5 views • 43 slides



Overview of Distributed Systems: Characteristics, Classification, Computation, Communication, and Fault Models

Characterizing Distributed Systems: Multiple autonomous computers with CPUs, memory, storage, and I/O paths, interconnected geographically, shared state, global invariants. Classifying Distributed Systems: Based on synchrony, communication medium, fault models like crash and Byzantine failures. Comp

9 views • 126 slides


Understanding Secure Act 2.0 Key Provisions

In a detailed report by Dee Spivey and Angie Zouhar, key provisions of SECURE Act 2.0 are outlined, including changes in retirement plans like RMD age increase, employee certification of hardship withdrawals, and more. Secure 1.0 and Secure 2.0 differences, effective dates, and necessary actions for

5 views • 12 slides


Introduction to SFTP & PGP Encryption for Secure Data Transfer

Discover how to ensure reliable data transfer, make informed decisions, and gain a strategic advantage through the use of Secure File Transfer Protocol (SFTP) and Pretty Good Privacy (PGP) encryption. The session includes demonstrations on PGP encryption and SFTP access, along with insights on setti

1 views • 22 slides


Computation of Machine Hour Rate: Understanding MHR and Overhead Rates

Computation of Machine Hour Rate (MHR) involves determining the overhead cost of running a machine for one hour. The process includes dividing overheads into fixed and variable categories, calculating fixed overhead hourly rates, computing variable overhead rates, and summing up both for the final M

4 views • 18 slides


Enhanced Security in Multiparty Computation

Explore the improved black-box constructions of composable secure computation, focusing on definitions, objectives, and the formalization basics of multiparty computation (MPC). Learn about the motivating security aspects in MPC and the real/ideal paradigm. Discover how MPC security involves compari

1 views • 68 slides


Ensuring Secure Testing Environments in Oregon Education System

Oregon's Statewide Assessment System (OSAS) emphasizes the critical need for secure testing environments to maintain the validity and accuracy of assessment data. This includes handling secure printed test materials, identifying and preventing improprieties, and reporting any irregularities. From ma

2 views • 20 slides


Understanding Numerical Methods and Errors in Computation

Delve into the world of numerical methods through the guidance of Dr. M. Mohamed Surputheen. Explore topics such as solving algebraic and transcendental equations, simultaneous linear algebraic equations, interpolation, numerical integration, and solving ordinary differential equations. Learn about

0 views • 130 slides


Enhancing Privacy in Crowdsourced Spectrum Allocation

This research focuses on protecting privacy in crowdsourced spectrum allocation, addressing the security challenges faced due to the presence of multiple entities and the sensitive information collected. By proposing potential ideas like Fully Homomorphic Encryption (FHE) and Secure Multi-Party Comp

0 views • 26 slides


Trust Income Computation and Application Guidelines

Learn about income computation of trusts using ITR-5 vs. ITR-7, types of institutions, components of income, application of income, and important guidelines including amendments by FA2022 for charitable and religious trusts.

0 views • 47 slides


Secure Computation Techniques in RAM Models with Efficient Automation

Explore the automation of efficient RAM-model secure computation techniques, including examples such as secure binary search. Discover how traditional solutions using circuit abstractions can be improved for sub-linear time computation through methods like Oblivious RAM. Learn about techniques such

0 views • 37 slides


Secure Multiparty Computation for Department of Education Data Sharing

This report discusses the use of Secure Multiparty Computation (SMC) to enable sharing of sensitive Department of Education data across organizational boundaries. The application of SMC allows for joint computation while keeping individual data encrypted, ensuring privacy and security within the Nat

0 views • 15 slides


Advancements in Active Secure Multiparty Computation (MPC)

Delve into the realm of secure multiparty computation under 1-bit leakage, exploring the intersection of DP algorithms, MPC, and the utilization of leakage for enhanced performance. Discover the overhead implications of achieving active security, as well as the evolution of secure computation protoc

0 views • 43 slides


Enhancing Computation in Physics Education Using Cognitive Approaches

Utilizing evidence-based methods, this study explores incorporating computation in physics courses, focusing on instructional design, student knowledge states, and preparation for future learning. It discusses common conceptual difficulties in quantum mechanics and proposes cognitive theory-based st

0 views • 24 slides


Tamper-Evident Pairing (TEP) Protocol for Secure Wireless Pairing Without Passwords

This article discusses the challenges of traditional secure wireless pairing methods that rely on password validation and proposes the Tamper-Evident Pairing (TEP) protocol as a secure in-band solution to protect against Man-in-the-Middle (MITM) attacks. TEP eliminates the need for out-of-band chann

0 views • 40 slides


Secure Multiparty Computation: Enhancing Privacy in Data Sharing

Secure multiparty computation (SMC) enables parties with private inputs to compute joint functions without revealing individual data, ensuring privacy and correctness. This involves computations on encrypted data using techniques like homomorphic encryption for scenarios like e-voting. SMC serves as

2 views • 27 slides


Understanding Sequence Alignment and Scoring Matrices

In this content, we dive into the fundamentals of sequence alignment, Opt score computation, reconstructing alignments, local alignments, affine gap costs, space-saving measures, and scoring matrices for DNA and protein sequences. We explore the Smith-Waterman algorithm (SW) for local sequence align

0 views • 26 slides


COMET: Code Offload by Migrating Execution - OSDI'12 Summary

The research paper discusses COMET, a system for transparently offloading computation from mobile devices to network resources to improve performance. It outlines the goals of COMET, its design, and evaluation, focusing on distributed shared memory and bridging computation disparity through offloadi

0 views • 31 slides


Exploring Challenges and Opportunities in Processing-in-Memory Architecture

PIM technology aims to enhance performance by moving computation closer to memory, improving bandwidth, latency, and energy efficiency. Despite initial setbacks, new strategies focus on cost-effectiveness, programming models, and overcoming implementation challenges. A new direction proposes intuiti

0 views • 43 slides


Actively Secure Arithmetic Computation and VOLE Study

Exploring actively secure arithmetic computation and VOLE with constant computational overhead at Tel Aviv University. Understanding how functions are represented in secure computation using arithmetic circuits over boolean circuits. Efficiently evaluating arithmetic circuits over large finite field

0 views • 36 slides


Enhancing Mobile-Cloud Computing with Autonomous Agents Framework

Autonomous Agents-based Mobile-Cloud Computing (MCC) refers to moving computing tasks to powerful centralized platforms in the cloud, offering advantages like extending battery life and dynamic resource provisioning. However, an inflexible split of computation between mobile and cloud platforms lead

0 views • 22 slides


Enhancing Multi-Party Computation Efficiency Through ORAM Techniques

Explore the realm of efficient random access in multi-party computation through the reevaluation of classic schemes and the introduction of new approaches. Discover the potential of ORAM in improving performance and reducing costs in various computational tasks, such as secure multi-party computatio

0 views • 22 slides


Enhancing I/O Performance on SMT Processors in Cloud Environments

Improving I/O performance and efficiency on Simultaneous Multi-Threading (SMT) processors in virtualized clouds is crucial for maximizing system throughput and resource utilization. The vSMT-IO approach focuses on efficiently scheduling I/O workloads on SMT CPUs by making them "dormant" on hardware

0 views • 31 slides


Accessing and Utilizing CPCSSN Secure Research Environment (SRE)

Learn how to access the CPCSSN Secure Research Environment (SRE) for secure data analysis. Follow steps such as setting up VPN, accessing SQL databases, and establishing ODBC connections for statistical analysis using tools like SAS, R, SPSS, or Stata. Enhance your research capabilities within a sec

0 views • 12 slides


Bootstrapping in Fully Homomorphic Encryption

Fully Homomorphic Encryption (FHE) allows evaluation of unbounded-depth circuits without being limited by specific parameters. Bootstrapping is a critical technique to achieve full homomorphism by refreshing ciphertexts, enabling decryption functionalities within the encryption scheme. This process

0 views • 38 slides


Homomorphic Encryption and RLWE Schemes Overview

Homomorphic encryption allows computation on encrypted data, enabling privacy in outsourced computing services and applications like spam filters for encrypted mail. The Ring Learning With Errors (RLWE) scheme and its properties are discussed, along with symmetric encryption from RLWE and fully homo

0 views • 16 slides


Advancements in Multi-Key Homomorphic Encryption Using TFHE

Revolutionary research has led to the development of Multi-Key Homomorphic Encryption (MKHE) from TFHE, enabling secure and efficient computations on encrypted data. This technology offers advantages such as dynamic operability, stronger security, and minimized interaction, making it an ideal soluti

0 views • 20 slides


Efficient Multi-Party Computation Techniques

Explore the innovative approaches to Multi-Party Computation (MPC) such as MPC via Fully Homomorphic Encryption (FHE) and Multi-Key FHE. The focus is on minimizing round complexity and achieving secure distributed computations. Learn about key concepts, protocols, and advancements in the realm of MP

0 views • 17 slides


Enhancing Animal Telemetry Data Systems for Secure Collaboration

Wide spectrum of animal telemetry data collection protocols and platforms require enhanced data stewardship options for secure sharing before public release. The need for a more granular understanding of available data and structured systems integration is crucial. Initial workflow involves providin

0 views • 4 slides


Balanced Graph Edge Partition and Its Practical Applications

Balanced graph edge partitioning is a crucial problem in graph computation, machine learning, and graph databases. It involves partitioning a graph's vertices or edges into balanced components while minimizing cut costs. This process is essential for various real-world applications such as iterative

0 views • 17 slides


Exploring Garbled RAM and Secure Computation

Garbled RAM, a concept based on garbled circuits, allows for secure two-party computation with implications for communication and computational complexities. The progression from basic to more ambitious scenarios in Garbled RAM models and the landscape of utilizing OWFs in a black-box manner for imp

0 views • 26 slides


Quantum Key Agreements and Random Oracles

This academic paper explores the impossibility of achieving key agreements using quantum random oracles, discussing the challenges and limitations in quantum communication, cryptographic protocols, quantum computation, and classical communication. The study delves into the implications of quantum ra

0 views • 29 slides


Exploring Secure Computation in the Age of Information

Welcome to Secure Computation Lecture 1 by Arpita Patra. The course covers evaluation policies, projects, and references in the realm of secure computation. The content delves into the significance of information security across various sectors, emphasizing the importance of safeguarding sensitive d

0 views • 36 slides


Understanding the Limits of Computation in CMSC.281 Undecidability

Exploring the concept of undecidability in computing, we delve into the question of whether there are tasks that cannot be computed. The journey leads us to the theorem that the language ATM, defined as containing Turing Machine descriptions accepting input strings, is undecidable, showcasing the fu

0 views • 14 slides


Exploring Sums of Powers of Positive Integers Through Leibnitz's Method

Students are introduced to the computation of sums of powers of positive integers through Leibnitz's Method and other techniques in the context of finding areas under curves and exploring integration. The presentation delves into the origins of these formulas and their computation, reflecting on the

0 views • 24 slides


STM32WB BLE Secure Connections Overview

This detailed content provides insights into the secure connections in STM32WB BLE devices, covering aspects such as BLE security methods, encryption techniques, pairing processes, key distribution, and security modes and levels. It emphasizes the use of Long Term Keys (LTK), Diffie-Hellman key exch

0 views • 12 slides


Understanding Secure Electronic Transactions (SET)

Secure Electronic Transactions (SET) is an encryption and security specification designed to protect credit card transactions on the Internet. SET provides a secure way to utilize existing credit card payment infrastructure on open networks, such as the Internet, involving participants like clients,

1 views • 6 slides


Secure Two-Party Computation and Basic Secret-Sharing Concepts

In today's lecture of "Foundations of Cryptography," the focus is on secure two-party and multi-party computation, emphasizing semi-honest security where Alice and Bob must compute without revealing more than necessary. Concepts such as real-world vs. ideal-world scenarios, the existence of PPT simu

0 views • 27 slides


Linear Communication in Secure Multiparty Computation for Efficient and Fast Processing

The research focuses on achieving perfectly secure multiparty computation (MPC) with linear communication and constant expected time. It explores efficient approaches using a broadcast-hybrid model and P2P communication, aiming to balance speed and efficiency in MPC. The study highlights the importa

0 views • 23 slides