Dense qcd - PowerPoint PPT Presentation


Strategies for Managing Malnutrition with Nutritional Care Plans

Understanding how to create and implement a nutritional care plan based on the MUST score, including strategies like Food First and Fortification, can help manage malnutrition effectively. This involves utilizing nutrient-dense foods, promoting wound healing, increasing muscle strength, and improvin

0 views • 18 slides


Pita Pocket Whole Wheat By BestPita.Com

It's essential to be mindful of your food choices when embarking on a weight-loss journey. ? Choosing nutrient-dense options over calorie-dense ones can make a significant difference. Unfortunately, foods like bread , pasta , pizza , and pastries are often high in refined carbohydrates and calories

2 views • 12 slides



Efficient dRU Tone Plan Design for UHR Communications

The document discusses the signaling techniques for Ultra-High Rate (UHR) communications using dRU (dense RU) for overcoming PSD limitations. It elaborates on the methods to construct a dRU tone plan and indicate dRUs within rRUs. The design involves defining different sizes of dRUs, combining tones

0 views • 28 slides


802.11ax Evaluation for IMT-2020 eMBB in Dense Urban Environments

The document presents a detailed analysis of the 802.11ax technology's performance in meeting IMT-2020 requirements for eMBB in dense urban settings. It includes results from simulations evaluating peak spectral efficiency, data rates, user experience, and mobility metrics. The study confirms 802.11

0 views • 14 slides


Evaluation of IEEE 802.11ax for IMT-2020 eMBB Dense Urban Test Environment

This document discusses the evaluation of IEEE 802.11ax technology in the context of the IMT-2020 Enhanced Mobile Broadband (eMBB) Dense Urban test environment. It analyzes the performance of 802.11ax in meeting the key PHY/MAC metrics required for eMBB Dense Urban scenarios, such as Peak Spectral E

2 views • 13 slides


Exploring Quantum Chromodynamics and Effective Potential in Vacuum Physics

Delve into the intricacies of Quantum Chromodynamics and the concept of effective potential in the context of vacuum physics. Discover how quarks, leptons, photons, W and Z bosons, gluons, and the Higgs boson play crucial roles in shaping the fundamental structures of the quantum vacuum. Explore the

1 views • 11 slides


Analysis of Food Away From Home Data Collection in Auckland, NZ

Urbanization and economic growth lead to increased consumption of food away from home, impacting calorie intake and food expenditures. Traditional household food consumption surveys may underestimate this trend. Consuming food outside the home often involves calorie-dense, less nutrient-dense option

0 views • 15 slides


Understanding Word2Vec: Creating Dense Vectors for Neural Networks

Word2Vec is a technique used to create dense vectors to represent words in neural networks. By distinguishing target and context words, the network input and output layers are defined. Through training, the neural network predicts target words and minimizes loss. The hidden layer's neuron count dete

7 views • 12 slides


Insights into Covariant Derivative in Financial Markets & Quantum Field Theory

Explore the applicability of covariant derivatives in differential geometry, financial markets, and QCD. Understand the concept of fibre bundles, connections, and related structures through insightful examples and discussions. Discover the role of covariant derivatives in moving between neighbouring

0 views • 16 slides


Open Heavy-Flavour Production in pp Collisions at the LHC - Physics Seminar Overview

Physics seminar presentation by Francesco Prino on open heavy-flavour production as a function of multiplicity in pp collisions at the Large Hadron Collider (LHC). The talk covers the motivation behind studying heavy-flavour production mechanisms, data analysis techniques, results on the multiplicit

0 views • 65 slides


Insights into Parton Branching Equation at LHC Energies

Multiplicity distributions play a crucial role in understanding the cascade of quarks and gluons at the LHC energies, revealing underlying correlations in particle production. Popular models like Monte Carlo and statistical models are used to describe the charged particle multiplicity distributions.

1 views • 17 slides


Investigation of QGP Formation at Fermi Lab CO Collider

Investigation led by L. Gutay at Purdue University, in collaboration with other researchers, presented evidence for de-confinement in high-energy collisions. The E-735 experiment at 1.8 TeV utilized advanced detectors and percolation theory to analyze multiparticle production, showcasing a potential

3 views • 20 slides


Workshop on Neutron Electric Dipole Moment: Theory to Experiment

Workshop on Neutron Electric Dipole Moment: Theory to Experiment will be held in Trento from August 1st to August 5th, 2022. The event aims to bridge the gap between theory and experiment in investigating the neutron EDM in Lattice QCD, Phenomenology, and Cosmology. Renowned speakers and financial s

1 views • 10 slides


Preliminary Results of IEEE 802.11-19/0728r1 11ax Evaluation on Mobility in Dense Urban eMBB Scenario

Presenting the initial outcomes of simulations on mobility in a Dense Urban enhanced Mobile Broadband (eMBB) scenario using IEEE 802.11-19/0728r1 standard. Results indicate compliance with ITU requirements for IMT-2020 RAT. Simulation parameters, configurations, assumptions, and analysis of mobility

1 views • 14 slides


Understanding Sparse vs. Dense Vector Representations in Natural Language Processing

Tf-idf and PPMI are sparse representations, while alternative dense vectors offer shorter lengths with non-zero elements. Dense vectors may generalize better and capture synonymy effectively compared to sparse ones. Learn about dense embeddings like Word2vec, Fasttext, and Glove, which provide effic

0 views • 44 slides


Understanding Nucleon Structure: Insights from EIC Workshop

Exploring the mechanics of nucleons and the physics goals of the Electron-Ion Collider (EIC), this content delves into the origin of nucleon mass and spin, emergent properties of dense gluon systems, and energy-momentum tensor in QCD. It discusses the role of gluons in understanding nucleon structur

0 views • 31 slides


Understanding SCET: Effective Theory of QCD

SCET, a soft collinear effective theory, describes interactions between low energy, soft partonic fields, and collinear fields in QCD. It helps prove factorization theorems and identifies relevant scales. The SCET Lagrangian is formed by gauge invariant building blocks, enabling gauge transformation

0 views • 38 slides


Algebraic Solutions for Two-Dimensional Adjoint QCD

Two-dimensional adjoint QCD is explored with a basis-function approach aiming to achieve single-particle states over cluttered multi-particle states. The algebraic solution involves t'Hooft-like integral equations and pseudo-cyclicity considerations to address parton number violation and boundary co

0 views • 22 slides


Understanding Flowing Gluon Fields and Color Glass Phenomena in QCD

Explore the collective phenomena of gluon fields in classical QCD, focusing on the Standard Model of URHICs, Color Glass, and Gluon Fields in the Forward Lightcone. The research delves into topics like local thermal equilibrium, viscous hydrodynamics, and the interaction of probes with quarks and gl

0 views • 24 slides


Forces Driving Ocean Currents and Water Movement Explained

Explore the forces behind water movement across the globe, including the impact of wind on surface currents and the role of temperature and density in driving deep ocean currents. Discover how cold, dense water sinks while warm, less dense water rises, influencing the circulation of water in our oce

0 views • 21 slides


Exploration of Thermodynamics in SU(3) Gauge Theory Using Gradient Flow

Investigate the thermodynamics of SU(3) gauge theory through gradient flow, discussing energy-momentum stress pressure, Noether current, and the restoration of translational symmetry. The study delves into lattice regularization, equivalence in continuum theory, and measurements of bulk thermodynami

0 views • 40 slides


Exploring Quarkyonic Matter and Chiral Pairing Phenomena

Investigate the characteristics of quarkyonic matter and chiral pairing phenomena in the context of dense QCD at T=0. Delve into the confinement aspects, the properties of quarkyonic matter near T=0, and the candidates for chiral symmetry breaking. Consider the implications of chiral pairing phenome

0 views • 42 slides


Exploration of Critical Points in Quark Matter by Jasmine Brewer

Explore the theoretical perspectives on strangeness in quark matter as discussed by Jasmine Brewer from Oxford. The presentation delves into the search for the QCD critical point, dynamics of heavy flavor hadronization, and more, highlighting challenges and future opportunities in the field.

0 views • 21 slides


Exploring CP Violation in Low-Energy QCD: New Physics Perspectives

Investigating CP violation in low-energy QCD, this presentation by Sean Tulin from the University of Michigan delves into the sensitivities of decays to new physics, focusing on CP violation beyond the Standard Model and the potential existence of new weakly-coupled light forces hiding under QCD. Di

0 views • 37 slides


Understanding Nucleon Spin Decomposition and Proton Spin Problem

Explore the complex realm of nucleon spin decomposition and the enigmatic proton spin problem, delving into concepts like orbital angular momentum, quarks and gluons' helicity, and longitudinal double spin asymmetry in polarized deep inelastic scattering. Learn about the spin crisis, gluon polarizat

0 views • 26 slides


Exploring Nuclear Symmetry Energy with QCD Sum Rule

This study delves into the concept of nuclear symmetry energy through the lens of QCD Sum Rule, discussing its implications in Rare Isotope Accelerator Plan and nucleon-nucleus scattering. Utilizing mean field approximation and Borel transformation, the research aims to understand asymmetric nuclear

0 views • 21 slides


Exploring Transverse Momentum Distributions (TMDs) at the GDR PH-QCD Annual Meeting

The Annual Meeting of the GDR PH-QCD focused on discussing Transverse Momentum Distributions (TMDs) and their significance at small kT and small x values. Topics covered include gauge-invariant correlators, PDFs, and PFFs, as well as the utilization of color gauge links in describing partonic transv

0 views • 33 slides


Nuclear Symmetry Energy in QCD Degree of Freedom

Understanding the nuclear symmetry energy in the context of Quantum Chromodynamics (QCD) is essential for nuclear phenomenology. This study explores topics such as QCD sum rules, mean field approximation, and operator product expansion to decipher the energy properties of nuclear systems. The resear

0 views • 15 slides


Modification of Nucleon Spectral Function in Nuclear Medium from QCD Sum Rules

Investigating the modification of nucleon properties in the nuclear medium using QCD sum rules, focusing on hadron properties, mass spectrum, and chiral symmetry restoration. The study discusses the mass differences, non-perturbative contributions, and the analysis of QCD sum rule in nuclear matter.

0 views • 27 slides


Exploring Quark-Gluon Plasma and New State of Matter at High Energy Colliders

Delve into the realm of high-energy physics at nucleus-nucleus colliders, with a focus on the discovery of deconfined partonic matter and the investigation of parallel worlds. Explore the recent insights, emerging topics, and new phenomena observed in ultra-intense collisions. Uncover the properties

0 views • 35 slides


Mesons in Medium and QCD Sum Rule with Dim-6 Operators

Study of mesons in medium and their behavior using QCD sum rule with dim-6 operators, exploring mass shifts, broadening, and indicators of quark-gluon plasma. Specifically focuses on charmonium sequential dissociation and non-perturbative methods in QCD such as lattice QCD and Dyson-Schwinger equati

0 views • 27 slides


Exploring Exotic Glueballs and Hadrons in QCD Sum Rule

Delve into the world of exotic glueballs and hadrons through a review of QCD sum rule, investigation of light scalar mesons, and discussion on hadrons with unconventional quantum numbers. Learn about theoretical frameworks and calculations involving correlators, dispersion relations, Borel transform

0 views • 32 slides


Investigation of Short-Range Correlations in Heavy Ion Collisions

Short-range correlations in nuclei play a crucial role in understanding the properties of nuclear wave functions and the transition from baryonic to quark-gluon degrees of freedom. Early theoretical work emphasized the importance of short-range correlations, particularly in modeling the nucleon spec

0 views • 17 slides


Precision Physics at Colliders: Choosing Wisely, Measuring Carefully, and Exploiting Ruthlessly

Precision Physics at Colliders explores the selection, measurement, and utilization of data at colliders, focusing on fundamental symmetries and parameters of the Standard Model. The lectures cover topics such as QCD, top, electroweak, and flavor physics, emphasizing the importance of precision meas

0 views • 42 slides


Byzantine Faults and Consensus on Unknown Torus

The discussion revolves around achieving consensus in the presence of dense Byzantine faults on an unknown torus. Various challenges and impossibility theorems are explored, highlighting the complexities of reaching an agreement in such fault-prone environments. The content delves into the limitatio

0 views • 23 slides


Exploring Parton and Nucleon Interactions in Hadronic Collisions

Discussions at the GDR QCD workshop covered a range of topics from double parton scattering to coherent processes on nuclei, emphasizing the importance of understanding parton interactions in both proton-proton and heavy ion collisions. Theoretical frameworks such as DPS, SPS, GPDs, and TMDs were ex

0 views • 12 slides


Neutrino Transport in Holography Research Study

This research study delves into the realm of neutrino transport in holography, focusing on the interaction of neutrinos with dense QCD matter in the core. Motivations, formalisms, holographic set-up, and the holographic correspondence are explored using a toy model of quark matter in 4SYM and utiliz

0 views • 32 slides


Collective Excitations in QCD Plasma: Hydrodynamic Regime Overview

This research presentation by Ali Davody and collaborators from Regensburg University explores collective excitations in QCD plasma, focusing on chiral hydrodynamics, magnetic and vortical waves, hydrodynamic excitation descriptions, and modes derived from kinetic theory. The study delves into the d

0 views • 33 slides


Insights into Kaon Physics: Unraveling Anomalies and New Discoveries

Delve into the world of Kaon Physics, from the historical discoveries like CP violation to modern experiments testing fundamental symmetries. Explore anomalies challenging the Standard Model and the implications for new physics models. Discover the interplay of QCD and EW penguin contributions, unce

0 views • 27 slides


Efficient Training of Dense Linear Models on FPGA with Low-Precision Data

Training dense linear models on FPGA with low-precision data offers increased hardware efficiency while maintaining statistical efficiency. This approach leverages stochastic rounding and multivariate trade-offs to optimize performance in machine learning tasks, particularly using Stochastic Gradien

0 views • 26 slides